Abstract

We introduce nonautonomous continuous dynamical systems which are linked to the Newton and Levenberg–Marquardt methods. They aim at solving inclusions governed by maximal monotone operators in Hilbert spaces. Relying on the Minty representation of maximal monotone operators as lipschitzian manifolds, we show that these dynamics can be formulated as first-order in time differential systems, which are relevant to the Cauchy–Lipschitz theorem. By using Lyapunov methods, we prove that their trajectories converge weakly to equilibria. Time discretization of these dynamics gives algorithms providing new insight into Newton's method for solving monotone inclusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.