Abstract

Cognitive radios enable dynamic spectrum access where secondary users (SUs) are allowed to operate on the licensed spectrum bands on an opportunistic noninterference basis. Cooperation among the SUs for spectrum sensing is essential for environments with deep shadows. In this paper, we study the adverse effect of insistent spectrum sensing data falsification (ISSDF) attack on iterative distributed cooperative spectrum sensing. We show that the existing trust management schemes are not adequate in mitigating ISSDF attacks in dynamic settings where the primary user (PU) of the band frequently transitions between active and inactive states. We propose a novel context-aware distributed trust framework for cooperative spectrum sensing in mobile cognitive radio ad hoc networks (CRAHN) that effectively alleviates different types of ISSDF attacks (Always-Yes, Always-No, and fabricating) in dynamic scenarios. In the proposed framework, the SU nodes evaluate the trustworthiness of one another based on the two possible contexts in which they make observations from each other: PU absent context and PU present context. We evaluate the proposed context-aware scheme and compare it against the existing context-oblivious trust schemes using theoretical analysis and extensive simulations of realistic scenarios of mobile CRAHNs operating in TV white space. We show that in the presence of a large set of attackers (as high as 60% of the network), the proposed context-aware trust scheme successfully mitigates the attacks and satisfy the false alarm and missed-detection rates of $10^{-2}$ and lower. Moreover, we show that the proposed scheme is scalable in terms of attack severity, SU network density, and the distance of the SU network to the PU transmitter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.