Abstract
We derive the existence of p-adic Hurwitz–Lerch L-function by means of a method provided by Washington. This function is a generalization of the one-variable p-adic L-function of Kubota and Leopoldt, and two-variable p-adic L-function of Fox. We also deduce divisibility properties of generalized Apostol–Bernoulli polynomials, in particular establish Kummer-type congruences for them.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have