Abstract
Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O'Leary proposed a constraint-reduced predictor---corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraint-reduced algorithm for semidefinite programming having both polynomial global and superlinear local convergences. The new algorithm repeats a corrector step to have an iterate tangentially approach a central path, by which superlinear convergence can be achieved. This study proves its convergence rate and shows its effective cost saving in numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.