Abstract

We consider a minimization problem for the variational functional associated with a Gross–Pitaevskii equation arising in the study of an attractive Bose–Einstein condensate. Under an ellipse-shaped trapping potential, that is, the bottom of the trapping potential is an ellipse, we prove that any minimizer of the minimization problem blows up at one of the endpoints of the major axis of the ellipse if the parameter associated to the attractive interaction strength approaches a critical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.