Abstract
The tradeoff between objective functions and constraints is a key issue that needs to be addressed by constrained multiobjective optimization algorithms, and constraint handling techniques (CHTs) are an important technique for balancing objective functions and constraints. In this paper, a novel CHT that fuses two rankings is proposed. Specifically, each individual is assigned two rankings: one ranking calculated based on Pareto dominance (regardless of constraints) and another calculated based on the constrained dominance principle (CDP). The fitness value of an individual is the weighted sum of these two rankings, and the weight is related to the generation number and the proportion of feasible solutions in the current generation. Based on the proposed CHT, a constrained multiobjective differential evolution algorithm is proposed. To generate high-quality offspring, the proposed constrained multiobjective differential evolution algorithm combines four mutation operations as core components of the search algorithm. The proposed algorithm is compared with eight state-of-the-art algorithms in experiments with five test suites, and the experimental results show that the proposed algorithm performs significantly better than the eight state-of-the-art algorithms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have