Abstract

This work documents the development of a tool to perform automated parameter fitting of constitutive material models. Specific to this work is the fitting of a Swift hardening rule and isotropic linear plasticity model to aluminum 2024-T351, C36000 brass, and C10100 copper. Material characterization was conducted through the use of compressive, cold upsetting tests. A noncontact, optical displacement measurement system was applied to measure the axial and radial deformation of the test specimens. Nonlinear optimization techniques were then applied to tune a finite element model to match experimental results through the optimization of material model parameters as well as frictional coefficient. The result is a system, which can determine constitutive model parameters rapidly and without user interaction. While this tool provided material parameters for each material and model tested, the quality of the fit varied depending on how appropriate the constitutive model was to the material's actual plastic behavior. Aluminum's behavior proved to be an excellent match to the Swift hardening rule while the behavior of brass and copper was described better by the linear plasticity model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.