Abstract
The real time Vehicle-to-Grid (V2G) and Vehicle-to-Vehicle (V2V) energy trading have ameliorated the smart city environment. Electric Vehicles (EVs) in smart cities have made it possible to balance the energy demand and supply without burdening the power grids. They also help in minimizing both the heap amounts of pollution and the greenhouse gas emissions. EVs not only charge their batteries from Charging Stations (CSs), but when the smart city faces energy deficiency, they supply their surplus energy to the power grids to fulfill energy demand as well. In addition, EVs also balance the energy demand and supply through energy trading at the local level during peak hours, which strengthens V2V energy trading. However, some issues, such as security threats and privacy leakage prevent EVs from participating in the energy trading process. In addition, the lack of incentives and knowledge about the cost of reaching the energy trading place within minimum time are also big challenges. Therefore, to solve the aforementioned challenges, a secure and efficient scheme for V2V and V2G energy trading is proposed in this paper. The proposed scheme also helps in promoting environmental friendliness and making the smart cities sustainable and reliable. In the proposed scheme, energy trading transactions are secured using consortium blockchain, wherein the Local Aggregators (LAGs) are selected as authorized nodes. LAGs perform their role as energy brokers and are responsible for validating the energy trading requests using Proof of Authority (PoA) consensus mechanism. Moreover, a solution to find accurate distance with required expenses and time to reach the charging destination is also proposed, which effectively guides EVs to reach the relevant CSs and encourages energy trading. Besides, we propose a fair payment mechanism using a smart contract to avoid financial irregularities. An incentive provisioning mechanism is also given in the proposed work to prevent EVs from acting selfishly. The efficient power flow having minimized losses in the vehicular network is of much importance. Therefore, the energy losses incurred in both V2G and V2V are discussed in this work. Furthermore, Oyente is used for smart contract’s security analysis and for testing Ethereum’s resilience against different security flaws. Two attacker models are proposed and the security analyses of the models are also provided. The analyses show that the proposed system is robust against the double spending and Sybil attacks. Finally, the efficient performance of our proposed scheme is validated and analyzed. The simulation results proved that our proposed work outperforms existing work in terms of providing a secure and efficient energy trading platform for both V2G and V2V environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have