Abstract

Two independent random elements taking values in a separable Hilbert space are considered. The aim is to develop a test with bootstrap calibration to check whether they have the same distribution or not. A transformation of both random elements into a new separable Hilbert space is considered so that the equality of expectations of the transformed random elements is equivalent to the equality of distributions. Thus, a bootstrap test procedure to check the equality of means can be used in order to solve the original problem. It will be shown that both the asymptotic and bootstrap approaches proposed are asymptotically correct and consistent. The results can be applied, for example, in functional data analysis. In practice, the test can be solved with simple operations in the original space without applying the mentioned transformation, which is used only to guarantee the theoretical results. Empirical results and comparisons with related methods support and complement the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.