Abstract

This paper presents a formulation for free-surface computations capable of handling complex phenomena, such as wave breaking, without excessive mass loss or smearing of the interface. The formulation is suitable for discretizations using finite elements of any topology and order, or other approaches such as isogeometric and finite volume methods. Furthermore, the approach builds on standard level set tools and can therefore be used to augment existing implementations of level set methods with discrete conservation properties. Implementations of the method are tested on several difficult two- and three-dimensional problems, including two incompressible air/water flow problems with available experimental results. Linear and quadratic approximations on unstructured tetrahedral and trilinear approximations on hexahedral meshes were tested. Global conservation and agreement with experiments as well as computations by other researchers are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.