Abstract

In this paper, a transient 2D coupled vertically averaged flow/transport model is presented. The model deals with all kind of bed geometries and guarantees global conservation and positive values of both water level and solute concentration in the transient solution. The model is based on an upwind finite volume method, using Roe's approximate Riemann solver. A specific modification of the Riemann solver is proposed to overcome the generation of negative values of depth and concentration, that can appear as a consequence of existing wetting/drying and solute advance fronts over variable bed levels, or by the generation of new ones when dry areas appear. The numerical stability constraints of the explicit model are stated incorporating the influence of the flow velocity, the bed variations and the possible appearance of dry cells. Faced to the important restriction that this new stability condition can impose on the time step size, a different strategy to allow stability using a maximum time step, and in consequence a minimum computational cost is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.