Abstract
In 1862, Wolstenholme proved that the numerator of the [Formula: see text]th harmonic number is divisible by [Formula: see text] for any prime [Formula: see text]. A variation of this theorem was shown by Alkan and Leudesdorf. Motivated by these results, we prove a congruence modulo some odd primes for some generalized harmonic type sums.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have