Abstract

Recent improvements in the accuracy of structure-based methods for the prediction of nuclear magnetic resonance chemical shifts have inspired numerous approaches for determining the secondary and tertiary structures of proteins. Such advances also suggest the possibility of using chemical shifts to characterize the conformational fluctuations of these molecules. Here we describe a method of using methyl chemical shifts as restraints in replica-averaged molecular dynamics (MD) simulations, which enables us to determine the conformational ensemble of the HU dimer and characterize the range of motions accessible to its flexible β-arms. Our analysis suggests that the bending action of HU on DNA is mediated by a mechanical clamping mechanism, in which metastable structural intermediates sampled during the hinge motions of the β-arms in the free state are presculpted to bind DNA. These results illustrate that using side-chain chemical shift data in conjunction with MD simulations can provide quantitative information about the free energy landscapes of proteins and yield detailed insights into their functional mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.