Abstract

Spatial network analysis is a collection of methods for measuring accessibility potentials as well as for analyzing flows over transport networks. Though it has been part of the practice of geographic information systems for a long time, designing network analytical workflows still requires a considerable amount of expertise. In principle, artificial intelligence methods for workflow synthesis could be used to automate this task. This would improve the (re)usability of analytic resources. However, though underlying graph algorithms are well understood, we still lack a conceptual model that captures the required methodological know‐how. The reason is that in practice this know‐how goes beyond graph theory to a significant extent. In this article we suggest interpreting spatial networks in terms of quantified relations between spatial objects, where both the objects themselves and their relations can be quantified in an extensive or an intensive manner. Using this model, it becomes possible to effectively organize data sources and network functions towards common analytical goals for answering questions. We tested our model on 12 analytical tasks, and evaluated automatically synthesized workflows with network experts. Results show that standard data models are insufficient for answering questions, and that our model adds information crucial for understanding spatial network functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.