Abstract
Triplet network is an efficient method of metric learning, but with the increase of the number of fine-grained images and sample categories, the training of Triplet network is more and more challengeable. In order to solve this problem, this paper proposes an algorithm that effectively combine Concept Ontology Structure with the Triplet network trained of Two-layer Ontology Loss. It not only utilizes semantic knowledge to guide the Concept Ontology Structure of the network, but also makes use of the relationship between the layers to make the network more effective to see the triplets, which enhances the separability of the learned features. At the same time, we also use the bilinear function jointly trained with the Triplet network to enhance the image details, further improving the performance of the network. Finally, the effectiveness of the proposed algorithm is also proved by the results of classification experiments on the fine-grained image databases - Orchid and Fashion60.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.