Abstract
Deep metric learning plays an important role in measuring similarity through distance metrics among arbitrary group of data. MNIST dataset is typically used to measure similarity however this dataset has few seemingly similar classes, making it less effective for deep metric learning methods. In this paper, we created a new handwritten dataset named Urdu-Characters with set of classes suitable for deep metric learning. With this work, we compare the performance of two state-of-the-art deep metric learning methods i.e. Siamese and Triplet network. We show that a Triplet network is more powerful than a Siamese network. In addition, we show that the performance of a Triplet or Siamese network can be improved using most powerful underlying Convolutional Neural Network architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.