Abstract

Data envelopment analysis (DEA) is a linear programming based non-parametric technique for evaluating the relative efficiency of homogeneous decision making units (DMUs) on the basis of multiple inputs and multiple outputs. There exist radial and non-radial models in DEA. Radial models only deal with proportional changes of inputs/outputs and neglect the input/output slacks. On the other hand, non-radial models directly deal with the input/output slacks. The slack-based measure (SBM) model is a non-radial model in which the SBM efficiency can be decomposed into radial, scale and mix-efficiency. The mix-efficiency is a measure to estimate how well the set of inputs are used (or outputs are produced) together. The conventional mix-efficiency measure requires crisp data which may not always be available in real world applications. In real world problems, data may be imprecise or fuzzy. In this paper, we propose (i) a concept of fuzzy input mix-efficiency and evaluate the fuzzy input mix-efficiency using α – cut approach, (ii) a fuzzy correlation coefficient method using expected value approach which calculates the expected intervals and expected values of fuzzy correlation coefficients between fuzzy inputs and fuzzy outputs, and (iii) a new method for ranking the DMUs on the basis of fuzzy input mix-efficiency. The proposed approaches are then applied to the State Bank of Patiala in the Punjab state of India with districts as the DMUs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.