Abstract

Cross-flow filtration with microporous membranes is increasingly used in the separation and concentration of particulate suspensions. Existing models for the filtrate flux are inadequate for correlating experimental observations and are based on contradictory physical mechanisms. We propose that the flux is limited by the formation of a dynamic concentration polarization boundary layer consisting of a high concentration of retained particles. A simple model is developed incorporating a shear-enhanced diffusivity of the large particles which arises from mutually induced velocity fields in the shear flow of the concentrated suspension. Predictions of the model agree well with experimental data for a variety of particulate suspensions. The model provides both a fundamental understanding of the physical phenomena governing flux and a rational basis for design of improved cross-flow filters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.