Abstract

In the present world, due to many factors like environmental changes, food styles, and living habits, human health is constantly affected by different diseases, which causes a huge amount of data to be managed in health care. Some diseases become life-threatening if they are not cured at the starting stage. Thus, it is a complex task for the healthcare system to design a well-trained disease prediction model for accurately identifying diseases. Deep learning models are the most widely used in disease prediction research, but their performance is inferior to conventional models. In order to overcome this issue, this work introduces the concatenation of Inception V3 and Xception deep learning convolutional neural network models. The proposed model extracts the main features and produces the prediction result more accurately than traditional predictive models. This work analyses the performance of the proposed model in terms of accuracy, precision, recall, and f1-score. It compares the proposed model to existing techniques such as Stacked Denoising Auto-Encoder (SDAE), Logistic Regression (LR), MLP, MLP with attention mechanism (MLP-A), Support Vector Machine (SVM), Multi Neural Network (MNN), and Hybrid Convolutional Neural Network (CNN)-Random Forest (RF).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.