Abstract
Mitochondria play a critical role in regulating cellular processes including ATP production, intracellular calcium signaling and generation of reactive oxidative species (ROS). Neurons rely on mitochondrial function to perform a range of complex processes, and mitochondrial dysfunctions have been shown to have an impact in pathologies of the nervous system. Yet, neurons contain a finite number of mitochondria, and their location is known to change in response to a number of factors including age and cellular activity, thereby impacting neuronal response. In this paper, we introduce a novel computational model of mitochondria motility that focuses on their movements along the axon. We describe the biological processes involved and the main parameters of the model. We use the model to investigate how some of these parameters affect the ability of mitochondria to position themselves in regions of high energy demand. Finally, we discuss the significance of our work and its downstream applications in further understanding pathologies of the nervous system such as Alzheimer's disease, and help identify potential novel therapeutic targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.