Abstract

The onset of rotating stall and surge in compressors limits the operating range of aero-engines. Accurately predicting the key features during these events is critical in the engine design process. In this paper, a three-dimensional computational model for transient simulation of multi-stage axial compressors during stall is proposed. The kinetic equations describing the dynamic process of the compression system are constructed, with a 3D through-flow model for the compression part and a 1D gas collector model for the outlet part. The calculation of the source term is performed using the developed body-force model, which realizes the correlation between the deviation angle and the loss coefficient with the inlet parameters in various flow regions. Validated on a single-stage compressor and a single-rotor fan, the results show that the method is capable of capturing the stall and surge features correctly and that the three-dimensional structure of the stall cell can be captured. In addition, this model could be used for the analysis of the surge load, which is significant for the structural integrity of the compressor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call