Abstract

This computational study investigates the photo-excitation process and subsequent photoproduct formation steps through non-radiative deactivation channels in open-chain conjugated N-substituted nitrone systems (model compounds of corresponding retinylnitrones) having electron-withdrawing groups on nitrogen. Calculations mostly based on CASSCF/6-31G* and CASMP2/6-31G* level of theories on a representative system with N-trifluoromethyl substituent have predicted initial photo-excitation to a planar singlet state. This photochemical path is subsequently followed by a barrierless non-radiative channel towards the lowest-energy conical intersection (CI) geometry having a terminal CNO kink, and situated at 30 kcal/mol below the planar excited state. Following the direction of its gradient difference (GD) vectors, an oxaziridine-type species (R C−O=1.38 Å, R N−O=1.53 Å, < CNO =55.8∘) appears at 3–6 kcal mol −1 below the ground state nitrone system through a transition state (along its reverse direction of minimum-energy path), situated on the reaction pathway. This species with an elongated N-O bond seems to be heading towards an amide geometry. On the other hand, in the opposite GD vector direction a proper oxaziridine geometry has been obtained with a much shorter N-O bond distance (R N−O=1.42 Å). CASSCF-based photochemical studies on conjugated nitrones with N-trifluoromethyl group have revealed a non-radiative decay route of the singlet excited state through a terminally twisted conical intersection. This eventually leads to an oxaziridine-type biradical species with an elongated N-O bond and it seems to be heading towards an amide as photoproduct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.