Abstract

A computational approach to the investigation of crack evolution and interaction effects of microcracks and particles on the overall behavior of particle-reinforced brittle composites (PRBCs) is presented. To account for interactions of microcracks and particles, and their effects on the overall mechanical behavior, approximate solutions of a micromechanical model considering second-order, ensemble-volume averaged perturbations are employed. By combining the micromechanical framework with a fracture-mechanics based damage model, an evolutionary damage model of PRBCs is subsequently developed and the evolutionary damage model is implemented into a finite element code. The proposed computational damage model is exercised from benchmark examples on PRBCs to illustrate the capability of the proposed damage models for predicting the progressive crack evolution in PRBCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call