Abstract

Legal judgment prediction (LJP) and decision support aim to enable machines to predict the verdict of legal cases after reading the description of facts, which is an application of artificial intelligence in the legal field. This paper proposes a legal judgment prediction model based on process supervision for the sequential dependence of each subtask in the legal judgment prediction task. Experimental results verify the effectiveness of the model framework and process monitoring mechanism adopted in this model. First, the convolutional neural network (CNN) algorithm was used to extract text features, and the principal component analysis (PCA) algorithm was used to reduce the dimension of data features. Next, the prediction model based on process supervision is proposed for the first time. When modeling the dependency relationship between sequential sub-data sets, process supervision is introduced to ensure the accuracy of the obtained dependency information, and genetic algorithm (GA) is introduced to optimize the parameters so as to improve the final prediction performance. Compared to our benchmark method, our algorithm achieved the best results on four different legal open data sets (CAIL2018_Small, CAIL2018_Large, CAIL2019_Small, and CAIL2019_Large). The realization of automatic prediction of legal judgment can not only assist judges, lawyers, and other professionals to make more efficient legal judgment but also provide legal aid for people who lack legal expertise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.