Abstract

Over the last few decades, the demand for hydrogen has significantly grown. Its high-energy content and relatively small environmental effect make it an ideal energy source and chemical feedstock. However, the perceived high risk of hydrogen in the eyes of society is a key challenge that has to be addressed before any future widespread utilization of hydrogen can be achieved. In this study, the consequences of unconfined hydrogen releases are evaluated using a computational fluid dynamics simulation software, FLACS, to determine the potential to explode. In addition, the study includes the analysis of parameters that can promote hydrogen vapor cloud explosion, e.g., initial pressure, time to ignition, and leak height position.The results conclude that high-pressure hydrogen has the potential to build up a large vapor cloud and may explode even without confinement when the leak source is close to the ground. The highest overpressure produced in the simulation was 0.71 barg, which resulted from igniting a hydrogen gas cloud from a 207 bar hydrogen source leaking at 1 m height. The high overpressure suggests that hazard studies for hydrogen leaks near the ground should not assume a free flow jet release. This study also gives a recommended distance from a high-pressure hydrogen processing unit to nearby occupied buildings to use in conjunction with industrial spacing tables for fire hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.