Abstract

Exploring the medicinal significance of bioactive compounds through computational methods is an increasingly practiced approach in contemporary medicinal research. This study aims to assess the antidiabetic potential of compounds extracted from the plant Nyctanthes arbor tristis by evaluating their ability to inhibit the carbohydrate metabolic enzyme α-glucosidase. The research work was conducted through molecular docking calculation, molecular dynamics simulation (MDS), and ADMET prediction techniques. Among the compounds, arbortistoside-C (NAS03), and arbortristoside-D (NAS04) found in the seed of the plant were identified as hit inhibitors of the target protein with docking scores, -9.9 and -9.4 kcal/mol, respectively. The compounds showed a comparable docking score with the drug of diabetes acarbose (-8.6 kcal/mol). Geometrical parameters like radius of gyration, solvent accessibility surface, root mean square deviation, and root mean square fluctuation from MDS supported the stability of the protein-ligand complex. MMPBSA calculations demonstrated the stability and feasibility of the complex with binding free energy changes of -29.06±6.06 and -23.58±8.80 kcal/mol for compounds NAS03 and NAS04, respectively. The ADMET prediction suggested the drug-likeness of the compounds compared with that of the standard drugs. The results could be used in proposing the antidiabetic potential of the two compounds from the plant as a potential inhibitors of α-glucosidase enzyme. Further, in vitro and in vivo experiments on such compounds could be a more reliable path to validate the output of this computational research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.