Abstract

A phoswich detector with two scintillation layers has been designed and assembled at Oregon State University. This detector is able to identify and reject Compton events and ultimately reduce the Compton continuum in gamma energy spectra. In this detector, CsI(Tl) crystal is used to primarily detect photoelectric events. The CsI(Tl) crystal is partially surrounded by a BGO crystal layer to capture and identify Compton-scattered photons. Both crystals are optically coupled to a single photomultiplier tube. A real-time, FPGA-based digital pulse shape analysis was developed to discriminate and reject Compton-induced pulses from the CsI(Tl) crystal. All the digital pulse processing functions including pulse shape discrimination analysis, pile-up rejection and energy measurement were implemented in an on-board FPGA device. In this paper, the results of recent measurements using radioactive lab sources will be presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.