Abstract

Data envelopment analysis (DEA) is the leading technique for measuring the relative efficiency of decision-making units (DMUs) on the basis of multiple inputs and multiple outputs. In this technique, the weights for inputs and outputs are estimated in the best advantage for each unit so as to maximize its relative efficiency. But, this flexibility in selecting the weights deters the comparison among DMUs on a common base. For dealing with this difficulty, Kao and Hung (2005) proposed a compromise solution approach for generating common weights under the DEA framework. The proposed multiple criteria decision-making (MCDM) model was derived from the original non-linear DEA model. This paper presents an improvement to Kao and Hung's approach by means of introducing an MCDM model which is derived from a new linear DEA model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.