Abstract
The paper introduces a failure model for laminated composite plates with a cutout under combined compressive and shear loads. The model is based on kinking failure of the load-carrying fibers around a cutout, and includes the effect of local shearing and compressive stresses. Comparison of predictions of the model with available experimental results for quasi-isotropic and orthotropic plates with a circular hole indicated a good agreement. Predictions for orthotropic plates under combined loading are compared with the predictions of a point-stress model. The present model indicates significant reductions in axial load-carrying capacity due to shearing loads for plates with principal axis of orthotropy oriented along the axial load direction. A gain in strength is achieved by rotating the axis of orthotropy to counteract the shearing stress, or by eliminating the compressive-shear deformation coupling.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have