Abstract

In the smart grid era, significant penetrations of distributed renewables not only directly impact the secondary low-voltage (LV) distribution network where they are connected, but also indirectly affect the primary medium-voltage (MV) distribution network. Therefore, load flow algorithms are expected to cover both MV and LV levels within a distribution network for more accurate and reasonable analyses. In this study, based on the Direct Load Flow approach and detailed modeling of common Dyn11 distribution transformers, a comprehensive three-phase load flow method which can effectively and efficiently solve the integrated MV and LV distribution networks is proposed. The feasibility and effectiveness as well as superior computational performance in terms of accuracy, efficiency and robustness are verified by simulations on the typical IEEE 4-bus test feeder and a real Australian distribution network over 24 hours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.