Abstract

In this study, the entrapment of benzophenone (BZ) into supramolecular nanoassemblies prepared by mixing two water-soluble associative polymers (i.e. polymerized β-CD (pβ–CD) and dextran grafted with lauryl-side chains (MD)) has been investigated by using isothermal titration microcalorimetry (ITC) and molecular modeling. ITC experiments have been performed at various temperatures (4 °C (277 K), 25 °C (298 K), and 37 °C (310 K)) to evaluate the interaction of BZ with pβ–CD in comparison with β-CD. The inclusion complexation for both β-CD/BZ and pβ–CD/BZ interactions was entropy-driven (|ΔH| |TΔS|) with minor entropic contribution when the temperature was increased (25 and 37 °C). Using all the thermodynamic data obtained for β-CD/BZ and pβ–CD/BZ interactions when the temperature of the experiment was varied, the \( \Updelta H\; = \;f(T\Updelta S ) \) plot was perfectly linear, which reflected an enthalpy–entropy compensation process. Finally, the combination of ITC data with molecular modeling provided consistent information in regard to the location of MD side chains and BZ inside the cyclodextrin cavity, as well as concerning the stability of the nanoassemblies loaded with BZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call