Abstract
Given only the URL of a Web page, can we identify its language? In this article we examine this question. URL-based language classification is useful when the content of the Web page is not available or downloading the content is a waste of bandwidth and time. We built URL-based language classifiers for English, German, French, Spanish, and Italian by applying a variety of algorithms and features. As algorithms we used machine learning algorithms which are widely applied for text classification and state-of-art algorithms for language identification of text. As features we used words, various sized n-grams, and custom-made features (our novel feature set). We compared our approaches with two baseline methods, namely classification by country code top-level domains and classification by IP addresses of the hosting Web servers. We trained and tested our classifiers in a 10-fold cross-validation setup on a dataset obtained from the Open Directory Project and from querying a commercial search engine. We obtained the lowest F1-measure for English (94) and the highest F1-measure for German (98) with the best performing classifiers. We also evaluated the performance of our methods: (i) on a set of Web pages written in Adobe Flash and (ii) as part of a language-focused crawler. In the first case, the content of the Web page is hard to extract and in the second page downloading pages of the “wrong” language constitutes a waste of bandwidth. In both settings the best classifiers have a high accuracy with an F1-measure between 95 (for English) and 98 (for Italian) for the Adobe Flash pages and a precision between 90 (for Italian) and 97 (for French) for the language-focused crawler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.