Abstract

A comprehensive comparison of hot-carrier instability between p- and n-type poly Si-gated MOSFET's is presented in this paper. The electron trapping and interface state generation in the 7 nm gate oxide of MOSFET's are investigated using uniform hot-electron injection from a buried junction injector (BJI) and channel-hot-carrier stress. From BJI experiments, electron trapping (instead of oxide trap generation) and interface state generation are shown to be the major effects of hot-electron injection. Electron trapping and interface state generation are found to be similar in both p- and n-type poly-Si gated MOSFET's. The dependences of interface state generation by hot electrons on oxide voltages and temperatures are observed to be similar between n- and p-type poly-Si gated MOSFET's. From the results of channel-hot-carrier stress on surface-channel n- and p-channel MOSFET's, it was also found that the channel-hot-carrier instabilities of p- and n-type poly-Si gated MOSFET's are comparable.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.