Abstract
Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.