7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1002/jmrs.860
Publication Date: Jan 23, 2025 | |
License type: cc-by |
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Despite advancements in early detection and treatment, postsurgical recurrence remains a significant challenge, occurring in 30%-55% of patients within 5 years after surgery. This review analysed existing studies on the utilisation of artificial intelligence (AI), incorporating CT, PET, and clinical data, for predicting recurrence risk in early-stage NSCLCs. A literature search was conducted across multiple databases, focusing on studies published between 2018 and 2024 that employed radiomics, machine learning, and deep learning based on preoperative positron emission tomography (PET), computed tomography (CT), and PET/CT, with or without clinical data integration. Sixteen studies met the inclusion criteria and were assessed for methodological quality using the METhodological RadiomICs Score (METRICS). The reviewed studies demonstrated the potential of radiomics and AI models in predicting postoperative recurrence risk. Various approaches showed promising results, including handcrafted radiomics features, deep learning models, and multimodal models combining different imaging modalities with clinical data. However, several challenges and limitations were identified, such as small sample sizes, lack of external validation, interpretability issues, and the need for effective multimodal imaging techniques. Future research should focus on conducting larger, prospective, multicentre studies, improving data integration and interpretability, enhancing the fusion of imaging modalities, assessing clinical utility, standardising methodologies, and fostering collaboration among researchers and institutions. Addressing these aspects will advance the development of robust and generalizable AI models for predicting postsurgical recurrence risk in early-stage NSCLC, ultimately improving patient care and outcomes.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.