Abstract

Crocin is derived from dried stigmas of Crocus sativus L. (saffron). It has long been used to prevent and treat various diseases. Although crocin is suggested as one of the most effective cancer therapeutic constituents of saffron stigma, its exact molecular mechanisms are not fully understood. In this study, we reviewed anticancer effects of crocin and its underlying molecular mechanisms. While several mechanisms may account for the antitumour activity of crocin, alteration of expression/activity of the genes and also epigenetic changes may be considered as necessary phenomena. These alternations may lead to inhibition of cancer cells' proliferation or/and induction of apoptosis through various mechanism including inhibition of synthesis of DNA and RNA, interaction with cellular topoisomerase, suppression of the telomerase activity and active STAT3, and targeting of microtubules. Moreover, this carotenoid could reverse the epithelial-mesenchymal transition and inhibit metastasis. Knowing molecular mechanisms of antitumoral agents could guide us to choose the best chemotherapeutic compound especially for targeted therapy and also provide insights about possible side effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call