Abstract

Flavopiridol is an inhibitor of several cyclin-dependent kinases, and exhibits potent growth-inhibitory activity against a number of human tumor cell lines both in vitro, and when grown as xenografts in mice. It has shown promising antineoplastic activity and is currently undergoing clinical phase II testing. Prostate cancer (PCa) remains a leading cause of morbidity and mortality among males in the United States. There are no effective treatments for hormone and/or radiation refractory PCa, suggesting that novel and newer treatment strategy may be useful in the management of PCa. Our previous study showed that flavopiridol induces cell growth inhibition and apoptosis in breast cancer cells. Here, we investigated whether flavopiridol was effective against prostate cancer cells. Flavopiridol was found to inhibit growth of PC3 prostate cancer cells. Induction of apoptosis was also observed in PC3 cells treated with flavopiridol, as measured by DNA laddering and PARP cleavage. We also found a significant down-regulation of Bcl-2 in flavopiridol-treated cells. These findings suggest that down-regulation of Bcl-2 may be one of the molecular mechanisms through which flavopiridol induces apoptosis and inhibits cell growth, suggesting that flavopiridol may be an effective chemotherapeutic agent against prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.