Abstract

Nanofluids are fluid nanoparticle suspensions that exhibit enhanced properties at modest nanoparticle concentrations. Nanofluids have unique heat transfer properties and are utilized in high heat flux systems (e.g., electronic cooling systems, heat exchanger liquids, solar collectors, and nuclear reactors). However, suspension stability is critical in the development and application of these heat transfer fluids. Reynolds number, mass concentration, and particle size control the heat transfer behavior of fluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion have rarely been investigated. Therefore, this paper explains the parameters that affect the stability of nanofluids and the different techniques used to evaluate the stability of nanofluids. This paper also presents an updated review of properties of nanofluids, such as physical (thermal conductivity) and rheological properties, with emphasis on their heat transfer enhancement characteristics. Studies on zeta potential as a function of pH are discussed and extended further to identify opportunities for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.