Abstract

It has long been established that a suspension of nanosized solid particles in liquids provide useful advantages in industrial heat transfer fluid systems. Numerous investigations on nanofluids show a significant enhancement in thermal conductivity over the base fluid in which these nanoparticles are dispersed. However, the stability of the suspension is critical in the development and application of these new kind of heat transfer fluids. Rather, high discrepancy in the published data for the same nanoparticles on the physical and thermal characteristics of nanofluids is primarily due to different methods adopted by different researchers to obtain stable nanofluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion stability has not been well addressed in the literature. Hence, there is a need to establish a standard method of preparation of these nanofluids so as to obtain a unified data which can eventually be utilized for the application of nanofluids. This chapter focuses on the stability of nanofluids prepared via two step process. Different parameters that affect the stability of nanofluids have been discussed. Different techniques that have been used for the evaluation of the stability characteristics of nanofluids have been elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.