Abstract

It has been demonstrated that energy systems driven by conventional energy sources like fossil fuels are one of the main causes of climate change. Organic Rankine cycles can help to reduce that impact, as they can be operated by using the industrial waste heat of renewable energies. The present study presents a comprehensive bibliographic review of organic Rankine cycles. The study not only actualizes previous reviews that mainly focused on basic cycles operating on subcritical or supercritical conditions, but also includes the analysis of novel cycles such as two-stage and hybrid cycles and the used fluids. Recuperative and regenerative cycles are more efficient than reheated and basic single-stage cycles. The use of two-stage cycles makes it possible to achieve higher thermal efficiencies and net power outputs of up to 20% and 44%, respectively, compared with those obtained with single-stage cycles. Theoretical studies show that hybrid systems, including Brayton and organic Rankine cycles, are the most efficient; however, they require very high temperatures to operate. Most organic Rankine cycle plants produce net power outputs from 1 kW up to several tens of kW, mainly using microturbines and plate heat exchangers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call