Abstract
In the last decades, there has been an increasing number of human patients who suffer from upper-limb disorders limiting their motor abilities. One of the possible solutions that gained extensive research interest is the development of robot-aided rehabilitation training setups, including either end-effector or exoskeleton robots, which showed various advantages compared to traditional manual rehabilitation therapy. One of the main challenges of these systems is to control the robot’s motion to track a desirable rehabilitation training trajectory while being affected by either voluntary or involuntary human forces depending on the patient’s recovery state. Several previous studies have been targeting exoskeleton robotic systems focusing on their structure, clinical features, and control methods, with limited review on end-effector-based robotic rehabilitation systems. In this regard, an overview of the most common end-effector robotic devices used for upper-limb rehabilitation is provided in this paper, describing their mechanical structure, features, clinical application, commercialization, advantages, and shortcomings. Additionally, a comprehensive review on possible control methods applied to end-effector rehabilitation exploitation is presented. These control methods are categorized as conventional, robust, intelligent, and most importantly, adaptive controllers implemented to serve for diverse rehabilitation control modes, addressing their development, implementation, findings, and possible drawbacks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have