Abstract
Nanotechnology involves creating, analyzing, and using tiny materials. Cobalt oxide nanoparticles (Co3O4 NPs) have several medicinal uses due to their unique antifungal, antibacterial, antioxidant, anticancer, larvicidal, anticholinergic, antileishmanial, wound healing, and antidiabetic capabilities. Cobalt oxide nanoparticles (Co3O4 NPs) with attractive magnetic properties have found widespread use in biomedical applications, including magnetic resonance imaging, magnetic hyperthermia, and magnetic targeting. The high surface area of Co3O4 leads to unique electrical, optical, catalytic, and magnetic properties, which make it a promising candidate for biomedical bases. Additionally, cobalt nanoparticles with various oxidation states (i.e., Co2+, Co3+, and Co4+) are beneficial in numerous utilizations. Co3O4 nanoparticles as a catalyzer accelerate the conversion rate of hydrogen peroxide (H2O2) to harmful hydroxyl radicals (•OH), which destroy tumor cells. However, it is also possible to enhance the generation of reactive oxygen species (ROS) and successfully treat cancer by combining these nanoparticles with drugs or other nanoparticles. This review summarizes the past concepts and discusses the present state and development of using Co3O4 NPs in cancer treatments by ROS generation. This review emphasizes the advances and current patterns in ROS generation, remediation, and some different cancer treatments using Co3O4 nanoparticles in the human body. It also discusses synthesis techniques, structure, morphological, optical, and magnetic properties of Co3O4 NPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.