Abstract

BackgroundAnticancer treatments aim to selectively target cancer cells without harming normal cells. While non-thermal atmospheric pressure plasma (NTAPP) has shown anticancer potential across various studies, the mechanisms behind its selective action on cancer cells remain inadequately understood. This study explores the mechanism of NTAPP-induced selective cell death and assesses its application in cancer therapy.MethodsWe treated HT1080 fibrosarcoma cells with NTAPP and assessed the intracellular levels of mitochondria-derived reactive oxygen species (ROS), mitochondrial function, and cell death mechanisms. We employed N-acetylcysteine to investigate ROS’s role in NTAPP-induced cell death. Additionally, single-cell RNA sequencing was used to compare gene expression in NTAPP-treated HT1080 cells and human normal fibroblasts (NF). Western blotting and immunofluorescence staining examined the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), a key antioxidant gene transcription factor. We also evaluated autophagy activity through fluorescence staining and transmission electron microscopy.ResultsNTAPP treatment increased ROS levels and induced mitochondrial dysfunction, leading to apoptosis in HT1080 cells. The involvement of ROS in selective cancer cell death was confirmed by N-acetylcysteine treatment. Distinct gene expression patterns were observed between NTAPP-treated NF and HT1080 cells, with NF showing upregulated antioxidant gene expression. Notably, NRF2 expression and nuclear translocation increased in NF but not in HT1080 cells. Furthermore, autophagy activity was significantly higher in normal cells compared to cancer cells.ConclusionsOur study demonstrates that NTAPP induces selective cell death in fibrosarcoma cells through the downregulation of the NRF2-induced ROS scavenger system and inhibition of autophagy. These findings suggest NTAPP’s potential as a cancer therapy that minimizes damage to normal cells while effectively targeting cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.