Abstract

Reliable data obtained from analysis of DNA, proteins, bacteria and other disease-related molecules or organisms in biological samples have become a fundamental and crucial part of human health diagnostics and therapy. After a brief summary of the implication of template based ordered mesoporous materials in electrochemical science, the various types of inorganic and organic-inorganic hybrid mesostructured used to date in electroanalysis and the corresponding electrode configurations are described. The development of non-invasive tests that are rapid, sensitive, specific and simple would allow patient discomfort to be prevented, delays in diagnosis to be avoided and the status of a disease to be followed up. The use of biosensors for the early diagnosis of diseases has become widely accepted as a point-of-care diagnosis with appropriate specificity in a short time. To allow a reliable diagnosis of a disease at an early stage, highly sensitive biosensors are required as the corresponding biomarkers are generally expressed at very low concentrations. In past 50 years, various biosensors have been researched and developed encompassing a wide range of applications. This contrasts the limited number of commercially available biosensors. Lately, graphene-based materials have been considered as superior over other nanomaterials for the development of sensitive biosensors. The advantages of graphenebased sensor interfaces are numerous, including enhanced surface loading of desired ligand due to the high surface-to-volume ratio, excellent conductivity and a small band gap that is beneficial for sensitive electrical and electrochemical read-outs, as well as tunable optical properties for optical read-outs such as fluorescence and plasmonics. In this paper, we review the advances made in recent years on graphenebased biosensors in the field of medical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.