Abstract

Obstructive sleep apnea (OSA) is a sleep disorder characterized by periodic episodes of partial or complete upper airway obstruction caused by narrowing or collapse of the pharyngeal airway despite ongoing breathing efforts during sleep. Fall in the blood oxygen saturation and cortical arousals are prompted by this reduction in the airflow which lasts for at least 10 seconds. Impaired labor performance, debilitated quality of life, excessive daytime sleepiness, high snoring, and tiredness even after a whole night's sleep are the primary symptoms of OSA. In due course, the long-standing contributions of OSA culminate in hypertension, arrhythmia, cerebrovascular disease, and heart failure. The traditional diagnostic approach of OSA is the laboratory-based polysomnography (PSG) overnight sleep study, which is a tedious and labor-intensive process that exaggerates the discomfort to the patient. With the advent of computer-aided diagnosis (CAD), automatic detection of OSA has gained increasing interest among researchers in the area of sleep disorders as it influences both diagnostic and therapeutic decisions. The research literature on sleep apnea published during the last decade has been surveyed, focusing on the varied screening approaches accustomed to identifying OSA events and the developmental knowledge offered by multiple contributors from the software perspective. The current study presents an overview of the pathophysiology of OSA, the detection methods, physiological signals related to OSA, the different preprocessing, feature extraction, feature selection, and classification techniques employed for the detection and classification of OSA. Consequently, the research challenges and research gaps in the diagnosis of OSA are identified, critically analyzed, and presented in the best possible light.

Highlights

  • The research literature on sleep apnea published during the last decade has been surveyed, focusing on the varied screening approaches accustomed to identifying obstructive sleep apnea (OSA) events and the developmental knowledge offered by multiple contributors from the software perspective

  • The current study presents an overview of the pathophysiology of OSA, the detection methods, physiological signals related to OSA, the different preprocessing, feature extraction, feature selection, and classification techniques employed for the detection and classification of OSA

  • The feature selection is done through two phases: in the initial stage, sequential forward feature selection method is adopted, and the features are ranked based on the number of times they have been included in the dataset

Read more

Summary

A Comprehensive Review

Computational Models for Obstructive Sleep Apnea Detection in Biomedical Applications. The traditional diagnostic approach of OSA is the laboratory-based polysomnography (PSG) overnight sleep study, which is a tedious and labor-intensive process that exaggerates the discomfort to the patient. With the advent of computer-aided diagnosis (CAD), automatic detection of OSA has gained increasing interest among researchers in the area of sleep disorders as it influences both diagnostic and therapeutic decisions. The research literature on sleep apnea published during the last decade has been surveyed, focusing on the varied screening approaches accustomed to identifying OSA events and the developmental knowledge offered by multiple contributors from the software perspective. The research challenges and research gaps in the diagnosis of OSA are identified, critically analyzed, and presented in the best possible light

Clinical Background
Physiological Signals for OSA Detection
Signal Source
Other Modes of Signal Acquisition
Preprocessing and Decomposition
Feature Extraction
Feature Selection
Classification
Inferences from the Survey
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.