Abstract
The present investigation aimed to gain insights into the structure of bioactive metabolic compounds in Nigella sativa L. seed oil. Initially, spectroscopic methods viz., GC-MS and FTIR were employed to determine functional groups, substituents, and conjugated double bonds in Nigella oil. GC-MS analysis identified 11 different amalgams, with p -cymene, ?-terpinene and ?-thujene being the major components. The FTIR spectrum revealed the presence of strong, sharp, and weak peaks, along with critical functional groups corresponding to C-H, O-H, C-C, C?N, and N-O, indicating the presence of pharmaceutically active constituents of the seed oil in the wavelength range of 400 – 4000 cm-1. HPLC analysis indicated that the percent composition of thymoquinone in the seed extract was reported as 0.90% at a wavelength of 254 nm. In the examined samples, thymoquinone and standard thymoquinone both showed a peak Rf value of 3.656. The study's findings revealed that thymoquinone is a potential phytochemical present in the oil. Furthermore, the identified biomolecules hold promise for use in pharmaceutical applications to enhance health standards.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have