Abstract

Mediated microbial electrosynthesis (MES) represents a promising strategy for the capture and conversion of CO2 into carbon-based products. We describe the development and application of a comprehensive multiphysics model to analyze a formate-mediated MES reactor. The model shows that this system can achieve a biomass productivity of ∼1.7 g L-1 h-1 but is limited by a competitive trade-off between O2 gas/liquid mass transfer and CO2 transport to the cathode. Synthetic metabolic strategies are evaluated for formatotrophic growth, which can enable an energy efficiency of ∼21 %, a 30 % improvement over the Calvin cycle. However, carbon utilization efficiency is only ∼10 % in the best cases due to a futile CO2 cycle, so gas recycling will be necessary for greater efficiency. Finally, separating electrochemical and microbial processes into separate reactors enables a higher biomass productivity of ∼2.4 g L-1 h-1 . The mediated MES model and analysis presented here can guide process design for conversion of CO2 into renewable chemical feedstocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call