Abstract

Reliability issues currently hamper the commercialization of capacitive RF MEMS switches. The most important failure mode is parasitic charging of the dielectric of such devices. In this paper we present an improved analytical model that enables us to calculate and understand the effect of insulator charging on the behavior of capacitive RF MEMS switches, and to describe the way they fail, and their reliability. Emphasis is placed on a shift of the pull-out voltage to predict failures. Tests with capacitive RF MEMS switches have been performed that validate the most important features of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.