Abstract

FOXP2 encodes the forkhead transcription factor that plays a significant role in language development. Single nucleotide polymorphisms in FOXP2 have been linked to speech- language disorder, autism, cancer and schizophrenia. So, scrutinizing the functional SNPs to better understand their association in disease is an uphill task. The purpose of the current study was to identify the missense SNPs which have detrimental structural and functional effects on the FOXP2 protein. Multiple computational tools were employed to investigate the deleterious role of non-synonymous SNPs. Five variants as Y531H, L558P, R536G and R553C were found to be associated with diseases and located at the forkhead domain of the FOXP2 protein. Molecular docking analysis of FOXP2 DNA binding domain with its most common target sequence 5'-CAAATT-3' predicted that R553C and L558P mutant variants destabilize protein structure by changing protein-DNA interface interactions and disruption of hydrogen bonds that may reduce the specificity and affinity of the binding. Further experimental investigations may need to verify whether this kind of structural and functional variations dysregulate protein activities and induce formation of disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call