Abstract

This paper presents a comprehensive evaluation of the Agent BAsed Rough sets Clustering (ABARC) algorithm, an approach using rough sets theory for clustering in environments characterized by uncertainty. Several experiments utilizing standard datasets are performed in order to compare ABARC against a range of supervised and unsupervised learning algorithms. This comparison considers various internal and external performance measures to evaluate the quality of clustering. The results highlight the ABARC algorithm’s capability to effectively manage vague data and outliers, showcasing its advantage in handling uncertainty in data. Furthermore, they also emphasize the importance of choosing appropriate performance metrics, especially when evaluating clustering algorithms in scenarios with unclear or inconsistent data. Keywords: rough sets, clustering, metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.